“The world of Tomorrow, 2050” – TRUSTED CLEAN TECHNOLOGY AND RENEWABLE ENERGY

Is it time to invest in TRUSTED CLEAN TECHNOLOGY AND RENEWABLE ENERGY COMPANIES WORLDWIDE?

See for yourself, Do the work here!

Yesterday, Today and Tomorrow,

The World of 2050!

What is Clean and Renewable Energy?

Renewable energy

Shepherds_Flat_Wind_Farm_2011

By Steve Wilson from Orpington, UK – flickr: More Windmills……,

—————————————————————————

Renewable energy is generally defined as energy that is collected from resources which are naturally replenished on a human timescale, such as sunlight, wind, rain, tides, waves, and geothermal heat. Renewable energy often provides energy in four important areas: electricity generation, air and water heating/cooling, transportation, and rural (off-grid) energy services.

Global_Wind_Power_Cumulative_Capacity.svg

(English: Global wind power cumulative installed capacity at the end of 2015, in gigawatts. (Data source: GWEC, Global Wind Statistics 2015) File usage: This file is used in a large number of articles to indicate current status of the wind industry and can and should be updated each year as new data becomes available.)

Based on REN21‘s 2014 report, renewable’s contributed 19 percent to humans’ global energy consumption and 22 percent to their generation of electricity in 2012 and 2013, respectively. This energy consumption is divided as 9% coming from traditional biomass, 4.2% as heat energy (non-biomass), 3.8% hydro electricity and 2% is electricity from wind, solar, geothermal, and biomass. Worldwide investments in renewable technologies amounted to more than US$214 billion in 2013, with countries like China and the United States heavily investing in wind, hydro, solar and bio fuels.

2014-michigan-176-1980-x-1024x576

Renewable energy often displaces conventional fuels in four areas: electricity generation, hot water/space heating, transportation, and rural (off-grid) energy services:

Power generation

Renewable hydroelectric energy provides 16.3% of the worlds electricity. When hydroelectric is combined with other renewable’s such as wind, geothermal, solar, biomass and waste: together they make the “renewable’s” total, 21.7% of electricity generation worldwide as of 2013. Renewable power generators are spread across many countries, and wind power alone already provides a significant share of electricity in some areas: for example, 14% in the U.S. state of Iowa, 40% in the northern German state of Schleswig-Holstein, and 49% in Denmark. Some countries get most of their power from renewable’s, including Iceland (100%), Norway (98%), Brazil (86%), Austria (62%), New Zealand (65%), and Sweden (54%).

Heating

Solar water heating makes an important contribution to renewable heat in many countries, most notably in China, which now has 70% of the global total (180 GWth). Most of these systems are installed on multi-family apartment buildings and meet a portion of the hot water needs of an estimated 50–60 million households in China. Worldwide, total installed solar water heating systems meet a portion of the water heating needs of over 70 million households. The use of biomass for heating continues to grow as well. In Sweden, national use of biomass energy has surpassed that of oil. Direct geothermal for heating is also growing rapidly. The newest addition to Heating is from Geothermal Heat Pumps which provide both heating and cooling, and also flatten the electric demand curve and are thus an increasing national priority (see also Renewable thermal energy).

Transportation

A bus fueled by bio-diesel

Soybeanbus

(Public Domain, https://commons.wikimedia.org/w/index.php?curid=12037773)

Bio-ethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources such as trees and grasses is also being developed as a feed stock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bio-ethanol is widely used in the USA and in Brazil. Bio-diesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Bio-diesel is produced from oils or fats using transesterification and is the most common bio-fuel in Europe.
A solar vehicle is an electric vehicle powered completely or significantly by direct solar energy. Usually, photo-voltaic (PV) cells contained in solar panels convert the sun‘s energy directly into electric energy. The term “solar vehicle” usually implies that solar energy is used to power all or part of a vehicle’s propulsion. Solar power may be also used to provide power for communications or controls or other auxiliary functions. Solar powered boats have mainly been limited to rivers and canals, but in 2007 an experimental 14m catamaran, the Sun21 sailed the Atlantic from Seville to Miami, and from there to New York. It was the first crossing of the Atlantic powered only by solar. Solar vehicles are not sold as practical day-to-day transportation devices at present, but are primarily demonstration vehicles and engineering exercises, often sponsored by government agencies. However, indirectly solar-charged vehicles are widespread and solar boats are available commercially.

IvanpahRunning

(By Sbharris – Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=31089494)

History

Prior to the development of coal in the mid 19th century, nearly all energy used was renewable. Almost without a doubt the oldest known use of renewable energy, in the form of traditional biomass to fuel fires, dates from 790,000 years ago. Use of biomass for fire did not become commonplace until many hundreds of thousands of years later, sometime between 200,000 and 400,000 years ago. Probably the second oldest usage of renewable energy is harnessing the wind in order to drive ships over water. This practice can be traced back some 7000 years, to ships on the Nile. Moving into the time of recorded history, the primary sources of traditional renewable energy were human labor, animal power, water power, wind, in grain crushing windmills, and firewood, a traditional biomass. A graph of energy use in the United States up until 1900 shows oil and natural gas with about the same importance in 1900 as wind and solar played in 2010.

In the 1860s and ’70s there were already fears that civilization would run out of fossil fuels and the need was felt for a better source. In 1873 Professor Augustine Mouchot wrote:

“The time will arrive when the industry of Europe will cease to find those natural resources, so necessary for it. Petroleum springs and coal mines are not inexhaustible but are rapidly diminishing in many places. Will man, then, return to the power of water and wind? Or will he emigrate where the most powerful source of heat sends its rays to all? History will show what will come.”

1024px-12-05-08_AS1

(By BSMPS – Own work, GFDL, https://commons.wikimedia.org/w/index.php?curid=8801773)

In 1885, Werner von Siemens, commenting on the discovery of the photo-voltaic effect in the solid state, wrote:

“In conclusion, I would say that however great the scientific importance of this discovery may be, its practical value will be no less obvious when we reflect that the supply of solar energy is both without limit and without cost, and that it will continue to pour down upon us for countless ages after all the coal deposits of the earth have been exhausted and forgotten.”

Max Weber mentioned the end of fossil fuel in the concluding paragraphs of his Die protestantische Ethik und der Geist des Kapitalismus, published in 1905.

Development of solar engines continued until the outbreak of World War I. The importance of solar energy was recognized in a 1911 Scientific American article: “in the far distant future, natural fuels having been exhausted [solar power] will remain as the only means of existence of the human race”.

The theory of peak oil was published in 1956. In the 1970’s environmentalists promoted the development of renewable energy both as a replacement for the eventual depletion of oil, as well as for an escape from dependence on oil, and the first electricity generating wind turbines appeared. Solar had long been used for heating and cooling, but solar panels were too costly to build solar farms until 1980.

The IEA 2014 World Energy Outlook projects a growth of renewable energy supply from 1,700 gigawatts in 2014 to 4,550 gigawatts in 2040. Fossil fuels received about $550 billion in subsidies in 2013, compared to $120 billion for all renewable energies.

Mainstream technologies

Wind power

800px-Windmills_D1-D4_-_Thornton_Bank

(By © Hans Hillewaert, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=4983836)

Main article: Wind power
The 845 MW Shepherds Flat Wind Farm near Arlington, Oregon, USA

Airflow’s can be used to run wind turbines. Modern utility-scale wind turbines range from around 600 kW to 5 MW of rated power, although turbines with rated output of 1.5–3 MW have become the most common for commercial use; the power available from the wind is a function of the cube of the wind speed, so as wind speed increases, power output increases up to the maximum output for the particular turbine. Areas where winds are stronger and more constant, such as offshore and high altitude sites, are preferred locations for wind farms. Typically full load hours of wind turbines vary between 16 and 57 percent annually, but might be higher in particularly favorable offshore sites.

Globally, the long-term technical potential of wind energy is believed to be five times total current global energy production, or 40 times current electricity demand, assuming all practical barriers needed were overcome. This would require wind turbines to be installed over large areas, particularly in areas of higher wind resources, such as offshore. As offshore wind speeds average ~90% greater than that of land, so offshore resources can contribute substantially more energy than land stationed turbines. In 2014 global wind generation was 706 tera-watt-hours or 3% of the worlds total electricity.

Hydropower

Main articles: Hydroelectricity and Hydropower
The Three Gorges Dam on the Yangtze River in China

ThreeGorgesDam-China2009

(By Source file: Le Grand PortageDerivative work: Rehman – File:Three_Gorges_Dam,_Yangtze_River,_China.jpg, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=11425004)

In 2013 hydropower generated almost 16% of the worlds total electricity. Since water is about 800 times denser than air, even a slow flowing stream of water, or moderate sea swell, can yield considerable amounts of energy. There are many forms of water energy:

Hydroelectric energy is a term usually reserved for large-scale hydroelectric dams. The largest of which is the Three Gorges Dam inChina and a smaller example is the Akosombo Dam in Ghana.
Micro hydro systems are hydroelectric power installations that typically produce up to 100 kW of power. They are often used in water rich areas as a remote-area power supply (RAPS).
Run-of-the-river hydroelectricity systems derive kinetic energy from rivers without the creation of a large reservoir.
Hydropower is produced in 150 countries, with the Asia-Pacific region generating 32 percent of global hydropower in 2010. For counties having the largest percentage of electricity from renewables, the top 50 are primarily hydroelectric. China is the largest hydroelectricity producer, with 721 terawatt-hours of production in 2010, representing around 17 percent of domestic electricity use. There are now three hydroelectricity stations larger than 10 GW: the Three Gorges Dam in China, Itaipu Dam across the Brazil/Paraguay border, and Guri Dam in Venezuela.

Wave power, which captures the energy of ocean surface waves, and tidal power, converting the energy of tides, are two forms of hydropower with future potential; however, they are not yet widely employed commercially. A demonstration project operated by the Ocean Renewable Power Company on the coast of Maine, and connected to the grid, harnesses tidal power from the Bay of Fundy, location of world’s highest tidal flow. Ocean thermal energy conversion, which uses the temperature difference between cooler deep and warmer surface waters, has currently no economic feasibility.

Solar energy

Main article: Solar energy
Satellite image of the 550-megawatt Topaz Solar Farm in California, USA

Topaz_Solar_Farm,_California_Valley

(By Earth Observatory image by Jesse Allen, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Adam Voiland. – http://earthobservatory.nasa.gov/IOTD/view.php?id=85403&src=eoa-iotd, Public Domain, https://commons.wikimedia.org/w/index.php?curid=38864327)

Solar energy, radiant light and heat from the sun, is harnessed using a range of ever-evolving technologies such as solar heating,photo-voltaics, concentrated solar power (CSP), concentrator photo-voltaics (CPV), solar architecture and artificial photosynthesis. Solar technologies are broadly characterized as either passive solar or active solar depending on the way they capture, convert and distribute solar energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light dispersing properties, and designing spaces that naturally circulate air. Active solar technologies encompass solar thermal energy, using solar collectors for heating, and solar power, converting sunlight into electricity either directly using photo-voltaics (PV), or indirectly using concentrated solar power (CSP).

A photo-voltaic system converts light into electrical direct current (DC) by taking advantage of the photoelectric effect. Solar PV has turned into a multi-billion, fast-growing industry, continues to improve its cost-effectiveness, and has the most potential of any renewable technologies together with CSP. Concentrated solar power (CSP) systems use lenses or mirrors and tracking systems to focus a large area of sunlight into a small beam. Commercial concentrated solar power plants were first developed in the 1980s. CSP-Stirling has by far the highest efficiency among all solar energy technologies.

In 2011, the International Energy Agency said that “the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating climate change, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared”. In 2014 global solar generation was 186 tera-watt-hours, slightly less than 1% of the worlds total grid electricity.

Geothermal energy

Main articles: Geothermal energy, Geothermal electricity and Renewable thermal energy

Steam rising from the Nesjavellir Geothermal Power Station in Iceland

1024px-NesjavellirPowerPlant_edit2

(By Gretar Ívarsson – Edited by Fir0002 – Gretar Ívarsson, geologist at Nesjavellir, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2523755)

High Temperature Geothermal energy is from thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the temperature of matter. Earth’s geothermal energy originates from the original formation of the planet and from radioactive decay of minerals (in currently uncertain but possibly roughly equal proportions). The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface. The adjective geothermal originates from the Greek roots geo, meaning earth, and thermos, meaning heat.

The heat that is used for geothermal energy can be from deep within the Earth, all the way down to Earth’s core – 4,000 miles (6,400 km) down. At the core, temperatures may reach over 9,000 °F (5,000 °C). Heat conducts from the core to surrounding rock. Extremely high temperature and pressure cause some rock to melt, which is commonly known as magma. Magma convects upward since it is lighter than the solid rock. This magma then heats rock and water in the crust, sometimes up to 700 °F (371 °C).

From hot springs, geothermal energy has been used for bathing since Paleolithic times and for space heating since ancient Roman times, but it is now better known for electricity generation.

Low Temperature Geothermal refers to the use of the outer crust of the earth as a Thermal Battery to facilitate Renewable thermal energy for heating and cooling buildings, and other refrigeration and industrial uses. In this form of Geothermal, a Geothermal Heat Pump and Ground-coupled heat exchanger are used together to move heat energy into the earth (for cooling) and out of the earth (for heating) on a varying seasonal basis. Low temperature Geothermal (generally referred to as “GHP”) is an increasingly important renewable technology because it both reduces total annual energy loads associated with heating and cooling, and it also flattens the electric demand curve eliminating the extreme summer and winter peak electric supply requirements. Thus Low Temperature Geothermal/GHP is becoming an increasing national priority with multiple tax credit support and focus as part of the ongoing movement toward Net Zero Energy. New York City has even just passed a law to require GHP anytime is shown to be economical with 20 year financing including the Socialized Cost of Carbon.

Bio energy

Main articles: Biomass, Biogas and Biofuel
Sugarcane plantation to produce-ethanol in Brazil

Faz_S_Sofia_canavial_090607_REFON

(By José Reynaldo da Fonseca – Own work, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=2263082)

Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of bio-fuel. Conversion of biomass to bio-fuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Wood remains the largest biomass energy source today; examples include forest residues – such as dead trees, branches and tree stumps –, yard clippings, wood chips and even municipal solid waste. In the second sense, biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including bio-fuels. Industrial biomass can be grown from numerous types of plants, including miscanthus, switch-grass, hemp, corn, poplar, willow, sorghum, sugarcane, bamboo, and a variety of tree species, ranging from eucalyptus to oil palm (palm oil).

Plant energy is produced by crops specifically grown for use as fuel that offer high biomass output per hectare with low input energy. Some examples of these plants are wheat, which typically yield 7.5–8 tonnes of grain per hectare, and straw, which typically yield 3.5–5 tonnes per hectare in the UK. The grain can be used for liquid transportation fuels while the straw can be burned to produce heat or electricity. Plant biomass can also be degraded from cellulose to glucose through a series of chemical treatments, and the resulting sugar can then be used as a first generation bio-fuel.

A CHP power station using wood to supply 30,000 households in France

Metz_biomass_power_station

Biomass can be converted to other usable forms of energy like methane gas or transportation fuels like ethanol and bio-diesel. Rotting garbage, and agricultural and human waste, all release methane gas – also called landfill gas or bio-gas. Crops, such as corn and sugarcane, can be fermented to produce the transportation fuel, ethanol. Bio-diesel, another transportation fuel, can be produced from left-over food products like vegetable oils and animal fats. Also, biomass to liquids (BTLs) and cellulosic ethanol are still under research. There is a great deal of research involving algal fuel or algae-derived biomass due to the fact that it’s a non-food resource and can be produced at rates 5 to 10 times those of other types of land-based agriculture, such as corn and soy. Once harvested, it can be fermented to produce bio-fuels such as ethanol, butanol, and methane, as well as bio-diesel and hydrogen. The biomass used for electricity generation varies by region. Forest by-products, such as wood residues, are common in the United States. Agricultural waste is common in Mauritius (sugar cane residue) and Southeast Asia (rice husks). Animal husbandry residues, such as poultry litter, are common in the United Kingdom.

Bio-fuels include a wide range of fuels which are derived from biomass. The term covers solid, liquid, and gaseous fuels. Liquid bio-fuels include bio-alcohols, such as bio-ethanol, and oils, such as bio-diesel. Gaseous bio-fuels include bio-gas, landfill gas and synthetic gas. Bio-ethanol is an alcohol made by fermenting the sugar components of plant materials and it is made mostly from sugar and starch crops. These include maize, sugarcane and, more recently, sweet sorghum. The latter crop is particularly suitable for growing in dry land conditions, and is being investigated by International Crops Research Institute for the Semi-Arid Tropics for its potential to provide fuel, along with food and animal feed, in arid parts of Asia and Africa.

With advanced technology being developed, cellulosic biomass, such as trees and grasses, are also used as feed-stocks for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bio-ethanol is widely used in the United States and in Brazil. The energy costs for producing bio-ethanol are almost equal to, the energy yields from bio-ethanol. However, according to the European Environment Agency, bio-fuels do not address global warming concerns. Bio-diesel is made from vegetable oils, animal fats or recycled greases. It can be used as a fuel for vehicles in its pure form, or more commonly as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Bio-diesel is produced from oils or fats using transesterification and is the most common bio-fuel in Europe. Bio-fuels provided 2.7% of the world’s transport fuel in 2010.

Biomass, bio-gas and bio-fuels are burned to produce heat/power and in doing so harm the environment. Pollutants such as sulphurous oxides (SOx), nitrous oxides (NOx), and particulate matter (PM) are produced from the combustion of biomass; the World Health Organisation estimates that 7 million premature deaths are caused each year by air pollution. Biomass combustion is a major contributor. The life cycle of the plants is sustainable, the lives of people less so.

Heat pump

Main article: heat pump
Outside unit of an air-source heat pump.

800px-Outunit_of_heat_pump

(By No machine-readable author provided. Ppntori assumed (based on copyright claims). – No machine-readable source provided. Own work assumed (based on copyright claims)., Public Domain, https://commons.wikimedia.org/w/index.php?curid=838369)

A heat pump is a device that provides heat energy from a source of heat to a destination called a “heat sink”. Heat pumps are designed to move thermal energy opposite to the direction of spontaneous heat flow by absorbing heat from a cold space and releasing it to a warmer one. A heat pump uses some amount of external power to accomplish the work of transferring energy from the heat source to the heat sink.

While air conditioners and freezers are familiar examples of heat pumps, the term “heat pump” is more general and applies to many HVAC (heating, ventilating, and air conditioning) devices used for space heating or space cooling. When a heat pump is used for heating, it employs the same basic refrigeration-type cycle used by an air conditioner or a refrigerator, but in the opposite direction – releasing heat into the conditioned space rather than the surrounding environment. In this use, heat pumps generally draw heat from the cooler external air or from the ground. In heating mode, heat pumps are three to four times more efficient in their use of electric power than simple electrical resistance heaters.

It has been concluded that heat pumps are the single technology that could reduce the greenhouse gas emissions of households better than every other technology that is available on the market. With a market share of 30% and (potentially) clean electricity, heat pumps could reduce global CO2 emissions by 8% annually. Using ground source heat pumps could reduce around 60% of the primary energy demand and 90% of CO2 emissions in Europe in 2050 and make handling high shares of renewable energy easier. Using surplus renewable energy in heat pumps is regarded as the most effective household means to reduce to reduce global warming and fossil fuel depletion.

Energy storage

Main article: Energy storage
Energy storage is a collection of methods used to store electrical energy on an electrical power grid, or off it. Electrical energy is stored during times when production (especially from intermittent power plants such as renewable electricity sources such as wind power, tidal power, solar power) exceeds consumption, and returned to the grid when production falls below consumption. Water pumped into a hydroelectric dam is the largest form of power storage.

Market and industry trends

Main article: Renewable energy commercialization

Growth of renewables

Global growth of renewables through 2011

GlobalREPowerCapacity-exHydro-Eng

(By S-kei – Own work.Data compilation of annual reports since 2006, the latest being:REN21, Renewables Global Status Report 2012, p.17, table “Selected Indicators”, PDF (archived)Renewable power capacity (total, not including hydro)Solar PV capacity (total)Wind power capacity (total)Biomass (72 GW) mentioned in text on p.17Geothermal (estimated 11.2 GW of capacity) in text on p.18see REN21’s archive of Previous Editions of the Report (GSR)Note to the author: This is a nice chart, very instructive. Please note that this report consists of 172 pages (for Y2012), and that the word “Biomass” and “Geothermal” appear 322 and 223 times, respectively. It has been very painfull to find the figures used in this chart. Please cite used figures (at least page number), and make links to data sources are archived., CC0, https://commons.wikimedia.org/w/index.php?curid=17186245 )

From the end of 2004, worldwide renewable energy capacity grew at rates of 10–60% annually for many technologies. For wind power and many other renewable technologies, growth accelerated in 2009 relative to the previous four years.  More wind power capacity was added during 2009 than any other renewable technology. However, grid-connected PV increased the fastest of all renewables technologies, with a 60% annual average growth rate. In 2010, renewable power constituted about a third of the newly built power generation capacities.

Projections vary, but scientists have advanced a plan to power 100% of the world’s energy with wind, hydroelectric, and solar power by the year 2030.

According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world’s electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment. Cedric Philibert, senior analyst in the renewable energy division at the IEA said: “Photo-voltaic and solar-thermal plants may meet most of the world’s demand for electricity by 2060 – and half of all energy needs – with wind, hydro-power and biomass plants supplying much of the remaining generation”. “Photo-voltaic and concentrated solar power together can become the major source of electricity”, Philibert said.

In 2014 global wind power capacity expanded 16% to 369,553 MW. Yearly wind energy production is also growing rapidly and has reached around 4% of worldwide electricity usage, 11.4% in the EU, and it is widely used in Asia, and the United States. In 2014, worldwide installed photo-voltaics capacity increased to 177 gigawatts (GW), sufficient to supply 1 percent of global electricity demands. Solar thermal energy stations operate in the USA and Spain, and as of 2016, the largest of these is the 392 MW Ivanpah Solar Electric Generating System in California. The world’s largest geothermal power installation is The Geysers in California, with a rated capacity of 750 MW. Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18% of the country’s automotive fuel. Ethanol fuel is also widely available in the USA.

Selected renewable energy global indicators 2008 2009 2010 2011 2012 2013 2014
Investment in new renewable capacity (annual) (109 USD) 182 178 237 279 256 232 270
Renewables power capacity (existing) (GWe) 1,140 1,230 1,320 1,360 1,470 1,578 1,712
Hydropower capacity (existing) (GWe) 885 915 945 970 990 1,018 1,055
Wind power capacity (existing) (GWe) 121 159 198 238 283 319 370
Solar PV capacity (grid-connected) (GWe) 16 23 40 70 100 138 177
Solar hot water capacity (existing) (GWth) 130 160 185 232 255 373 406
Ethanol production (annual) (109 litres) 67 76 86 86 83 87 94
Biodiesel production (annual) (109 litres) 12 17.8 18.5 21.4 22.5 26 29.7
Countries with policy targets
for renewable energy use
79 89 98 118 138 144 164
Source: The Renewable Energy Policy Network for the 21st Century (REN21)–Global Status Report

——————————————————————–

Economic trends

US_projected_cost_of_wind_power

(By E. Lantz and M. Hand (National Renewable Energy Laboratory) and R. Wiser (Lawrence Berkeley National Laboratory) – “The Past and Future Cost of Wind Energy”, NREL conference paper no. 6A20-54526, page 4, Public Domain, https://commons.wikimedia.org/w/index.php?curid=21891244)

Projection of levelized cost for wind in the U.S. (left) and solar power in Europe

800px-EU-PV-LCOE-Projection

(By S-kei – Own workData source: EPIA Solar Photovoltaics Competing in the Energy Sector—On the road to competitiveness, September 2011. PDF-format. See page 18, figure 8, European PV LCOE range projection 2010-2020 by segment.Errata: This chart slightly differs from the cited data source (by one euro-cent only for each of the three instances):Upper boundary for 2010: chart above displays 36 cents vs. 35 cents in the cited sourceLower boundary for 2015: chart above displays 10 cents vs. 11 cents in the cited sourceUpper boundary for 2020: chart above displays 19 cents vs. 18 cents in the cited source, CC0, https://commons.wikimedia.org/w/index.php?curid=16702599)

Renewable energy technologies are getting cheaper, through technological change and through the benefits of mass production and market competition. A 2011 IEA report said: “A portfolio of renewable energy technologies is becoming cost-competitive in an increasingly broad range of circumstances, in some cases providing investment opportunities without the need for specific economic support,” and added that “cost reductions in critical technologies, such as wind and solar, are set to continue.”

Hydro-electricity and geothermal electricity produced at favorable sites are now the cheapest way to generate electricity. Renewable energy costs continue to drop, and the levelised cost of electricity (LCOE) is declining for wind power, solar photo-voltaic (PV), concentrated solar power (CSP) and some biomass technologies. Renewable energy is also the most economic solution for new grid-connected capacity in areas with good resources. As the cost of renewable power falls, the scope of economically viable applications increases. Renewable technologies are now often the most economic solution for new generating capacity. Where “oil-fired generation is the predominant power generation source (e.g. on islands, off-grid and in some countries) a lower-cost renewable solution almost always exists today”.  A series of studies by the US National Renewable Energy Laboratory modeled the “grid in the Western US under a number of different scenarios where intermittent renewables accounted for 33 percent of the total power.” In the models, inefficiencies in cycling the fossil fuel plants to compensate for the variation in solar and wind energy resulted in an additional cost of “between $0.47 and $1.28 to each Mega-Watt hour generated”; however, the savings in the cost of the fuels saved “adds up to $7 billion, meaning the added costs are, at most, two percent of the savings.”

Hydroelectricity

See also: List of largest hydroelectric power stations
Only 25% of the worlds estimated hydroelectric potential of 14,000 TWh/year has been developed, with Africa, Asia and Latin America having the greatest potential. The Three Gorges Dam in Hubei, China, has the world’s largest instantaneous generating capacity (22,500 MW), with the Itaipu Dam in Brazil/Paraguay in second place (14,000 MW). The Three Gorges Dam is operated jointly with the much smaller Gezhouba Dam (3,115 MW). As of 2012, the total generating capacity of this two-dam complex is 25,615 MW. In 2008, this complex generated 98 TWh of electricity (81 TWh from the Three Gorges Dam and 17 TWh from the Gezhouba Dam), which is 3% more power in one year than the 95 TWh generated by Itaipu in 2008.

Wind power development

Main article: Wind power by country

File:Global Wind Power Cumulative Capacity.svg

Worldwide growth of wind capacity (1996–2014)

File:Thames Estuary and Wind Farms from Space NASA with annotations.jpg

Four offshore wind farms are in the Thames Estuaryarea: Kentish Flats, Gunfleet Sands, Thanet and London Array. The latter is the largest in the world as of April 2013.

Wind power is widely used in Europe, China, and the United States. From 2004 to 2014, worldwide installed capacity of wind power has been growing from 47 GW to 369 GW—a more than seven fold increase within 10 years with 2014 breaking a new record in global installations (51 GW). As of the end of 2014, China, the United States and Germany combined accounted for half of total global capacity. Several other countries have achieved relatively high levels of wind power penetration, such as 21% of stationary electricity production in Denmark, 18% in Portugal, 16% in Spain, and 14% in Ireland in 2010 and have since continued to expand their installed capacity.  More than 80 countries around the world are using wind power on a commercial basis.

Offshore wind power

As of 2014, offshore wind power amounted to 8,771 megawatt of global installed capacity. Although offshore capacity doubled within three years (from 4,117 MW in 2011), it accounted for only 2.3% of the total wind power capacity. The United Kingdom is the undisputed leader of offshore power with half of the world’s installed capacity ahead of Denmark, Germany, Belgium and China.

List of offshore and onshore wind farms

As of 2012, the Alta Wind Energy Center (California, 1,020 MW) is the world’s largest wind farm. The London Array(630 MW) is the largest offshore wind farm in the world. The United Kingdom is the world’s leading generator of offshore wind power, followed by Denmark. There are several large offshore wind farms operational and under construction and these include Anholt (400 MW), BARD (400 MW), Clyde (548 MW), Fântânele-Cogealac (600 MW),Greater Gabbard (500 MW), Lincs (270 MW), London Array (630 MW), Lower Snake River (343 MW), Macarthur (420 MW), Shepherds Flat (845 MW), and the Sheringham Shoal (317 MW).

Solar thermal

Main article: List of solar thermal power stations

File:IvanpahRunning.JPG

(The 377 MW Ivanpah Solar Electric Generating System with all three towers under load, Feb 2014. Taken from I-15)

The United States conducted much early research in photo-voltaics and concentrated solar power. The U.S. is among the top countries in the world in electricity generated by the Sun and several of the world’s largest utility-scale installations are located in the desert Southwest.

The oldest solar thermal power plant in the world is the 354 megawatt (MW) SEGS thermal power plant, in California. The Ivanpah Solar Electric Generating System is a solar thermal power project in the California Mojave Desert, 40 miles (64 km) southwest of Las Vegas, with a gross capacity of 377 MW.[104] The 280 MW Solana Generating Station is a solar power plant near Gila Bend, Arizona, about 70 miles (110 km) southwest of Phoenix, completed in 2013. When commissioned it was the largest parabolic trough plant in the world and the first U.S. solar plant with molten salt thermal energy storage.

File:PS20andPS10.jpg

(Solar Towers of the PS10 and PS20solar thermal plants in Spain)

The solar thermal power industry is growing rapidly with 1.3 GW under construction in 2012 and more planned. Spain is the epicenter of solar thermal power development with 873 MW under construction, and a further 271 MW under development. In the United States, 5,600 MW of solar thermal power projects have been announced. Several power plants have been constructed in the Mojave Desert, Southwestern United States. The Ivanpah Solar Power Facility being the most recent. In developing countries, three World Bank projects for integrated solar thermal/combined-cycle gas-turbine power plants in Egypt, Mexico, and Morocco have been approved.

Photo-voltaic development

Main articles: Growth of photo-voltaics and Solar power by country

Worldwide growth of PV capacity grouped by region in MW (2006–2014)

Photo-voltaics (PV) uses solar cells assembled into solar panels to convert sunlight into electricity. It’s a fast-growing technology doubling its worldwide installed capacity every couple of years. PV systems range from small, residential and commercial rooftop or building integrated installations, to large utility-scale photo-voltaic power station. The predominant PV technology is crystalline silicon, while thin-film solar cell technology accounts for about 10 percent of global photo-voltaic deployment. In recent years, PV technology has improved its electricity generating efficiency, reduced the installation cost per watt as well as its energy payback time, and has reached grid parity in at least 30 different markets by 2014.  Financial institutions are predicting a second solar “gold rush” in the near future.

At the end of 2014, worldwide PV capacity reached at least 177,000 megawatts. Photo-voltaics grew fastest in China, followed by Japan and the United States, while Germany remains the world’s largest overall producer of photo-voltaic power, contributing about 7.0 percent to the overall electricity generation. Italy meets 7.9 percent of its electricity demands with photo-voltaic power—the highest share worldwide.  For 2015, global cumulative capacity is fore-casted to increase by more than 50 gigawatts (GW). By 2018, worldwide capacity is projected to reach as much as 430 gigawatts. This corresponds to a tripling within five years. Solar power is fore-casted to become the world’s largest source of electricity by 2050, with solar photo-voltaics and concentrated solar power contributing 16% and 11%, respectively. This requires an increase of installed PV capacity to 4,600 GW, of which more than half is expected to be deployed in China and India.

Photo-voltaic power stations

List of photovoltaic power stations

File:Solar Panels at Topaz Solar 1 (8159002527) (2).jpg
(Solar panels at the 550 MW Topaz Solar Farm)

Commercial concentrated solar power plants were first developed in the 1980s. As the cost of solar electricity has fallen, the number of grid-connected solar PV systems has grown into the millions and utility-scale solar power stations with hundreds of megawatts are being built. Solar PV is rapidly becoming an inexpensive, low-carbon technology to harness renewable energy from the Sun.

Many solar photo-voltaic power stations have been built, mainly in Europe, China and the USA. The 579 MW Solar Star, in the United States, is the world’s largest PV power station.

Many of these plants are integrated with agriculture and some use tracking systems that follow the sun’s daily path across the sky to generate more electricity than fixed-mounted systems. There are no fuel costs or emissions during operation of the power stations.

However, when it comes to renewable energy systems and PV, it is not just large systems that matter. Building-integrated photo-voltaics or “onsite” PV systems use existing land and structures and generate power close to where it is consumed.

File:Giant photovoltaic array.jpg

(Nellis Solar Power Plant,photovoltaic power plant in Nevada, USA)

Space Based solar power

Main article: Space-based solar power
For either photovoltaic or thermal systems, one option is to loft them into space, particularly Geosynchronous orbit. To be competitive with Earth-based solar power systems, the specific mass (kg/kW) times the cost to loft mass plus the cost of the parts needs to be $2400 or less. I.e., for a parts cost plus rectenna of $1100/kW, the product of the $/kg and kg/kW must be $1300/kW or less.[118] Thus for 6.5 kg/kW, the transport cost cannot exceed $200/kg. While that will require a 100 to one reduction, SpaceX is targeting a ten to one reduction, Reaction Engines may make a 100 to one reduction possible.

Carbon-neutral and negative fuels

Main articles: Carbon-neutral fuel and Methanol economy
Carbon-neutral fuels are synthetic fuels (including methane, gasoline, diesel fuel, jet fuel or ammonia produced by hydro-generating-waste carbon dioxide recycled from power plant flue-gas emissions, recovered from automotive exhaust gas, or derived from carbonic acid in seawater. Such fuels are considered carbon-neutral because they do not result in a net increase in atmospheric greenhouse gases. To the extent that synthetic fuels displace fossil fuels, or if they are produced from waste carbon or seawater carbonic acid, and their combustion is subject to carbon capture at the flue or exhaust pipe, they result in negative carbon dioxide emission and net carbon dioxide removal from the atmosphere, and thus constitute a form of greenhouse gas remediation.

Such renewable fuels alleviate the costs and dependency issues of imported fossil fuels without requiring either electrification of the vehicle fleet or conversion to hydrogen or other fuels, enabling continued compatible and affordable vehicles. Carbon-neutral fuels offer relatively low cost energy storage, alleviating the problems of wind and solar inter-mittency, and they enable distribution of wind, water, and solar power through existing natural gas pipelines. Nighttime wind power is considered the most economical form of electrical power with which to synthesize fuel, because the load curve for electricity peaks sharply during the warmest hours of the day, but wind tends to blow slightly more at night than during the day, so, the price of nighttime wind power is often much less expensive than any alternative. Germany has built a 250 kilowatt synthetic methane plant which they are scaling up to 10 megawatts.

The George Olah carbon dioxide recycling plant in Grindavík, Iceland has been producing 2 million liters of methanol transportation fuel per year from flue exhaust of the Svartsengi Power Station since 2011. It has the capacity to produce 5 million liters per year.

Bio-fuel development

File:Sao Paulo ethanol pump 04 2008 74 zoom.jpg

(Dual-fuel gas station at Sao Paulo, Brazil. Alcohol (ethanol) and G gasoline)

Brazil produces bio-ethanol made from sugarcane available throughout the country. A typical gas station with dual fuel service is marked “A” for alcohol (ethanol) and “G” for gasoline.

Bio-fuels provided 3% of the world’s transport fuel in 2010.  Mandates for blending bio-fuels exist in 31 countries at the national level and in 29 states/provinces. According to the International Energy Agency, bio-fuels have the potential to meet more than a quarter of world demand for transportation fuels by 2050.

Since the 1970s, Brazil has had an ethanol fuel program which has allowed the country to become the world’s second largest producer of ethanol (after the United States) and the world’s largest exporter. Brazil’s ethanol fuel program uses modern equipment and cheap sugarcane as feed-stock, and the residual cane-waste (bagasse) is used to produce heat and power. There are no longer light vehicles in Brazil running on pure gasoline. By the end of 2008 there were 35,000 filling stations throughout Brazil with at least one ethanol pump. Unfortunately, Operation Car Wash has seriously eroded public trust in oil companies and has implicated several high ranking Brazilian officials.

Nearly all the gasoline sold in the United States today is mixed with 10% ethanol, and motor vehicle manufacturers already produce vehicles designed to run on much higher ethanol blends. Ford, Daimler AG, and GM are among the automobile companies that sell “flexible-fuel” cars, trucks, and minivans that can use gasoline and ethanol blends ranging from pure gasoline up to 85% ethanol. By mid-2006, there were approximately 6 million ethanol compatible vehicles on U.S. roads.

Geothermal development

See also: Geothermal energy in the United States

File:West Ford Flat Geothermal Cooling Tower.JPG

(Geothermal plant at The Geysers, California, USA)

Geothermal power is cost effective, reliable, sustainable, and environmentally friendly, but has historically been limited to areas near tectonic plate boundaries. Recent technological advances have expanded the range and size of viable resources, especially for applications such as home heating, opening a potential for widespread exploitation. Geothermal wells release greenhouse gases trapped deep within the earth, but these emissions are much lower per energy unit than those of fossil fuels. As a result, geothermal power has the potential to help mitigate global warming if widely deployed in place of fossil fuels.

The International Geothermal Association (IGA) has reported that 10,715 MW of geothermal power in 24 countries is online, which is expected to generate 67,246 GWh of electricity in 2010. This represents a 20% increase in geothermal power online capacity since 2005. IGA projects this will grow to 18,500 MW by 2015, due to the large number of projects presently under consideration, often in areas previously assumed to have little exploitable resource.

In 2010, the United States led the world in geothermal electricity production with 3,086 MW of installed capacity from 77 power plants; the largest group of geothermal power plants in the world is located at The Geysers, a geothermal field in California. The Philippines follows the US as the second highest producer of geothermal power in the world, with 1,904 MW of capacity online; geothermal power makes up approximately 18% of the country’s electricity generation.

Developing countries

File:Solar-Panel-Cooker-in-front-of-hut.jpg

(Solar cookers use sunlight as energy source for outdoor cooking)

Renewable energy can be particularly suitable for developing countries. In rural and remote areas, transmission and distribution of energy generated from fossil fuels can be difficult and expensive. Producing renewable energy locally can offer a viable alternative.

Technology advances are opening up a huge new market for solar power: the approximately 1.3 billion people around the world who don’t have access to grid electricity. Even though they are typically very poor, these people have to pay far more for lighting than people in rich countries because they use inefficient kerosene lamps. Solar power costs half as much as lighting with kerosene. As of 2010, an estimated 3 million households get power from small solar PV systems. Kenya is the world leader in the number of solar power systems installed per capita. More than 30,000 very small solar panels, each producing 12 to 30 watts, are sold in Kenya annually. Some Small Island Developing States (SIDS) are also turning to solar power to reduce their costs and increase their sustainability.

Micro-hydro configured into mini-grids also provide power. Over 44 million households use bio-gas made in household-scale digesters for lighting and/or cooking, and more than 166 million households rely on a new generation of more-efficient biomass cook stoves. Clean liquid fuel sourced from renewable feed-stocks are used for cooking and lighting in energy-poor areas of the developing world. Alcohol fuels (ethanol and methanol) can be produced sustainable from non-food sugary, starchy, and cellulostic feed-stocks. Project Gaia, Inc. and CleanStar Mozambique are implementing clean cooking programs with liquid ethanol stoves in Ethiopia, Kenya, Nigeria and Mozambique.

Renewable energy projects in many developing countries have demonstrated that renewable energy can directly contribute to poverty reduction by providing the energy needed for creating businesses and employment. Renewable energy technologies can also make indirect contributions to alleviating poverty by providing energy for cooking, space heating, and lighting. Renewable energy can also contribute to education, by providing electricity to schools.

Industry and policy trends

File:Global-RE-Investment-VC-Eng.png

(Global New Investments in Renewable Energy)

U.S. President Barack Obama‘s American Recovery and Reinvestment Act of 2009 includes more than $70 billion in direct spending and tax credits for clean energy and associated transportation programs. Leading renewable energy companies include First Solar, Gamesa,GE Energy, Hanwha Q Cells, Sharp Solar, Siemens, SunOpta, Suntech Power, and Vestas.

The military has also focused on the use of renewable fuels for military vehicles. Unlike fossil fuels, renewable fuels can be produced in any country, creating a strategic advantage. The US military has already committed itself to have 50% of its energy consumption come from alternative sources.

The International Renewable Energy Agency (IRENA) is an intergovernmental organization for promoting the adoption of renewable energy worldwide. It aims to provide concrete policy advice and facilitate capacity building and technology transfer. IRENA was formed on 26 January 2009, by 75 countries signing the charter of IRENA.  As of March 2010, IRENA has 143 member states who all are considered as founding members, of which 14 have also ratified the statute.

As of 2011, 119 countries have some form of national renewable energy policy target or renewable support policy. National targets now exist in at least 98 countries. There is also a wide range of policies at state/provincial and local levels.

United Nations’ Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity. In October 2011, he “announced the creation of a high-level group to drum up support for energy access, energy efficiency and greater use of renewable energy. The group is to be co-chaired by Kandeh Yumkella, the chair of UN Energy and director general of the UN Industrial Development Organisation, and Charles Holliday, chairman of Bank of America”.

100% renewable energy

Main article: 100% renewable energy
The incentive to use 100% renewable energy, for electricity, transport, or even total primary energy supply globally, has been motivated by global warming and other ecological as well as economic concerns. The Intergovernmental Panel on Climate Change has said that there are few fundamental technological limits to integrating a portfolio of renewable energy technologies to meet most of total global energy demand. Renewable energy use has grown much faster than even advocates anticipated. At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. Also, Professors S. Pacala and Robert H. Socolow have developed a series of “stabilization wedges” that can allow us to maintain our quality of life while avoiding catastrophic climate change, and “renewable energy sources,” in aggregate, constitute the largest number of their “wedges.”

Using 100% renewable energy was first suggested in a Science paper published in 1975 by Danish physicist Bent Sørensen. It was followed by several other proposals, until in 1998 the first detailed analysis of scenarios with very high shares of renewables were published. These were followed by the first detailed 100% scenarios. In 2006 a PhD thesis was published by Czisch in which it was shown that in a 100% renewable scenario energy supply could match demand in every hour of the year in Europa and North Africa. In the same year Danish Energy professor Henrik Lund published a first paper in which he addresses the optimal combination of renewables, which was followed by several other papers on the transition to 100% renewable energy in Denmark. Since then Lund has been publishing several papers on 100% renewable energy. After 2009 publications began to rise steeply, covering 100% scenarios for countries in Europa, America, Australia and other parts of the world.

In 2011 Mark Z. Jacobson, professor of civil and environmental engineering at Stanford University, and Mark Delucchi published a study on 100% renewable global energy supply in the journal Energy Policy. They found producing all new energy with wind power, solar power, and hydro-power by 2030 is feasible and existing energy supply arrangements could be replaced by 2050. Barriers to implementing the renewable energy plan are seen to be “primarily social and political, not technological or economic”. They also found that energy costs with a wind, solar, water system should be similar to today’s energy costs.

Similarly, in the United States, the independent National Research Council has noted that “sufficient domestic renewable resources exist to allow renewable electricity to play a significant role in future electricity generation and thus help confront issues related to climate change, energy security, and the escalation of energy costs … Renewable energy is an attractive option because renewable resources available in the United States, taken collectively, can supply significantly greater amounts of electricity than the total current or projected domestic demand.”

The most significant barriers to the widespread implementation of large-scale renewable energy and low carbon energy strategies are primarily political and not technological. According to the 2013 Post Carbon Pathways report, which reviewed many international studies, the key roadblocks are: climate change denial, the fossil fuels lobby, political inaction, unsustainable energy consumption, outdated energy infrastructure, and financial constraints.

Emerging technologies

Other renewable energy technologies are still under development, and include cellulosic ethanol, hot-dry-rock geothermal power, and marine energy. These technologies are not yet widely demonstrated or have limited commercialization. Many are on the horizon and may have potential comparable to other renewable energy technologies, but still depend on attracting sufficient attention and research, development and demonstration (RD&D) funding.

There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of renewable energy. This research spans several areas of focus across the renewable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.[161]Multiple federally supported research organizations have focused on renewable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners. Sandia has a total budget of $2.4 billion while NREL has a budget of $375 million.

Enhanced geothermal system

File:EGS diagram.svg

(Enhanced geothermal system)

An enhanced geothermal system (EGS) generates geothermal electricity without the need for natural convective hydro-thermal resources. Until recently, geothermal power systems have exploited only resources where naturally occurring heat, water, and rock permeability are sufficient to allow energy extraction. However, by far most of geothermal energy within reach of conventional techniques is in dry and impermeable rock.  EGS technologies enhance and/or create geothermal resources in this hot dry rock (HDR) through ‘hydraulic stimulation’.

Enhanced geothermal systems (EGS) are a new type of geothermal power technologies that do not require natural convective hydro-thermal resources. The vast majority of geothermal energy within drilling reach is in dry and non-porous rock. EGS technologies “enhance” and/or create geothermal resources in this “hot dry rock (HDR)” through hydraulic stimulation. EGS and HDR technologies, like hydro-thermal geothermal, are expected to be base-load resources which produce power 24 hours a day like a fossil plant. Distinct from hydro-thermal, HDR and EGS may be feasible anywhere in the world, depending on the economic limits of drill depth. Good locations are over deep granite covered by a thick (3–5 km) layer of insulating sediments which slow heat loss. There are HDR and EGS systems currently being developed and tested in France, Australia, Japan, Germany, the U.S. and Switzerland. The largest EGS project in the world is a 25 megawatt demonstration plant currently being developed in the Cooper Basin, Australia. The Cooper Basin has the potential to generate 5,000–10,000 MW.

Cellulosic ethanol
Several refineries that can process biomass and turn it into ethano are built by companies such as Iogen, POET, and Abengoa, while other companies such as the Verenium Corporation, Novozymes, and Dyadic International are producing enzymes which could enable future commercialization. The shift from food crop feed-stocks to waste residues and native grasses offers significant opportunities for a range of players, from farmers to biotechnology firms, and from project developers to investors.

Artificial photosynthesis
Artificial photosynthesis uses techniques including nanotechnology to store solar electromagnetic energy in chemical bonds by splitting water to produce hydrogen and then using carbon dioxide to make methanol. Researchers in this field are striving to design molecular mimics of photosynthesis that utilize a wider region of the solar spectrum, employ catalytic systems made from abundant, inexpensive materials that are robust, readily repaired, non-toxic, stable in a variety of environmental conditions and perform more efficiently allowing a greater proportion of photon energy to end up in the storage compounds, i.e., carbohydrates (rather than building and sustaining living cells). However, prominent research faces hurdles, Sun Catalytix a MIT spin-off stopped scaling up their prototype fuel-cell in 2012, because it offers few savings over other ways to make hydrogen from sunlight.

Algae fuels
Producing liquid fuels from oil-rich varieties of algae is an ongoing research topic. Various micro-algae grown in open or closed systems are being tried including some system that can be set up in brownfield and desert lands.
Experimental solar power
Concentrated photo-voltaics (CPV) systems employ sunlight concentrated onto photo-voltaic surfaces for the purpose of electricity generation. Thermo-electric, or “thermo-voltaic” devices convert a temperature difference between dissimilar materials into an electric current.

Marine energy

(Rance Tidal Power Station, France)

Marine energy (also sometimes referred to as ocean energy) refers to the energy carried by ocean waves, tides, salinity, and ocean temperature differences. The movement of water in the world’s oceans creates a vast store of kinetic energy, or energy in motion. This energy can be harnessed to generate electricity to power homes, transport and industries. The term marine energy encompasses both wave power – power from surface waves, and tidal power – obtained from the kinetic energy of large bodies of moving water. Reverse electro-dialysis (RED) is a technology for generating electricity by mixing fresh river water and salty sea water in large power cells designed for this purpose; as of 2016 it is being tested at a small scale (50 kW). Offshore wind power is not a form of marine energy, as wind power is derived from the wind, even if the wind turbines are placed over water. The oceans have a tremendous amount of energy and are close to many if not most concentrated populations. Ocean energy has the potential of providing a substantial amount of new renewable energy around the world.

Debate

Main articles: Renewable energy debate, Nuclear power proposed as renewable energy and Green job
Renewable electricity production, from sources such as wind power and solar power, is sometimes criticized for being variable or intermittent, but is not true for concentrated solar, geo-thermal and bio-fuels, that have continuity. In any case, the International Energy Agency has stated that deployment of renewable technologies usually increases the diversity of electricity sources and, through local generation, contributes to the flexibility of the system and its resistance to central shocks.

There have been “not in my back yard” (NIMBY) concerns relating to the visual and other impacts of some wind farms, with local residents sometimes fighting or blocking construction. In the USA, the Massachusetts Cape Wind project was delayed for years partly because of aesthetic concerns. However, residents in other areas have been more positive. According to a town councilor, the overwhelming majority of locals believe that the Ardrossan Wind Farm in Scotland has enhanced the area.

A recent UK Government document states that “projects are generally more likely to succeed if they have broad public support and the consent of local communities. This means giving communities both a say and a stake”. In countries such as Germany and Denmark many renewable projects are owned by communities, particularly through cooperative structures, and contribute significantly to overall levels of renewable energy deployment.

The market for renewable energy technologies has continued to grow. Climate change concerns and increasing in green jobs, coupled with high oil prices, peak oil, oil wars, oil spills, promotion of electric vehicles and renewable electricity, nuclear disasters and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization. New government spending, regulation and policies helped the industry weather the 2009 economic crisis better than many other sectors. Although there has been spectacular growth in areas like China, wind, geothermal, solar, biomass and waste worldwide produce 1400 tera-watt-hours annually or 2.5% of the worlds energy. Nuclear proponents claim that despite the technology’s potential, progress in clean energy is too slow.

————————-

ad by

My City Guide Digital Media
Ford of Tomorrow
SEMAG
TBN – Trusted Brand Names

TBN – Trusted Brand Names

sponsored by

2015-11-07_10-13-38-1024x4881-1024x488

by

imageedit_1_9478230856-tranparent

by

imageedit_4_7914266660

by

imageedit_1_7598313279

Is it time to invest in TRUSTED CLEAN TECHNOLOGY AND RENEWABLE ENERGY COMPANIES WORLDWIDE?